An oil drop carries six electronic charges, has a mass of $1.6 \times 10^{-12} g$ and falls with a terminal velocity in air. The magnitude of vertical electrical electric field required to make the drop move upward with the same speed as was formely moving is ........$kN/C$
$16.3$
$32.7$
$98$
None of the above
A charged oil drop is suspended in a uniform field of $3 \times$ $10^{4} V / m$ so that it neither falls nor rises. The charge on the drop will be $.....\times 10^{-18}\; C$
(take the mass of the charge $=9.9 \times 10^{-15} kg$ and $g=10 m / s ^{2}$ )
Four point charges $-q, +q, +q$ and $-q$ are placed on $y$ axis at $y = -2d$, $y = -d, y = +d$ and $y = +2d$, respectively. The magnitude of the electric field $E$ at a point on the $x -$ axis at $x = D$, with $D > > d$, will vary as
Select the correct statement : (Only force on a particle is due to electric field)
A half ring of radius $R$ has a charge of $\lambda$ per unit length. The electric force on $1\, C$ charged placed at the centre is
A thin disc of radius $b = 2a$ has a concentric hole of radius $'a'$ in it (see figure). It carries uniform surface charge $'\sigma '$ on it. If the electric field on its axis at height $'h'$ $(h << a)$ from its centre is given as $'Ch'$ then value of $'C'$ is